SYLLABUS

B.Sc. II Year

JAI NARAIN VYAS UNIVERSITY
JODHPUR
Theory

<table>
<thead>
<tr>
<th>Course</th>
<th>Nomenclature</th>
<th>Number of Papers</th>
<th>Number of Periods per week</th>
<th>Maximum marks</th>
<th>Minimum marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paper I</td>
<td>Taxonomy and Embryology of Angiosperms</td>
<td>1</td>
<td>2</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Paper II</td>
<td>Anatomy of Angiosperms, Economic Botany and Ethnobotany</td>
<td>1</td>
<td>2</td>
<td>50</td>
<td>54</td>
</tr>
<tr>
<td>Paper III</td>
<td>Cell Biology, Genetics, Plant Breeding and Evolution</td>
<td>1</td>
<td>2</td>
<td>50</td>
<td></td>
</tr>
</tbody>
</table>

PRACTICAL COURSE: 6 75 27

Duration of examination of each theory papers 3 hours
Duration of examination of practicals 5 hours

PAPER I: TAXONOMY AND EMBRYOLOGY OF ANGIOSPERMS

Unit I: Diversity in plant form in annuals, biennials and perennials, Canopy architecture in angiosperms: tree-origin, development, arrangement and diversity in size and shape, Flower-modified shoot, structure and development of flower, Inflorescence-types of Inflorescence.

Unit II: Angiosperms: Origin and evolution. Some examples of primitive angiosperms. Angiosperm taxonomy; (Alpha-taxonomy, Omega-taxonomy, holotaxonomy) Taxonomic literature. Botanical nomenclature; principles and rules; taxonomic ranks, type concept, principle of priority. Classification of angiosperms; salient features of the systems proposed by Bentham and Hooker and Engler and Prantl.

Unit III: Major contributions of cytology and molecular biology, phytochemistry and taximetrics to taxonomy. Diversity of flowering plants as illustrated by members of the families Ranunculaceae, Papaveraceae, Caryophyllaceae, Capparidaceae, Cucurbitaceae, Rutaceae and Apiaceae.
Unit IV: Diversity of flowering plants as illustrated by members of the families Asteraceae, Acanthaceae, Apocynaceae, Asclepiadaceae, Scrophulariaceae, Lamiaceae, Euphorbiaceae, Musaceae and Poaceae.

Unit V: Embryology: Structure of anther and pistil. Development of the male and female gametophytes; pollen-pistil interactions, self incompatibility; Double fertilization; Development of endosperm and embryo; Brief account of experimental embryology. Basics of gene imprinting.

Suggested Laboratory Exercises
Field study of diversities found in leaf shapes, size, thickness and surface properties. The following families are for detailed taxonomic studies:
1. Ranunculaceae: Ranunculus, Delphinium
2. Paparerasceae: Papaver, Argemone
3. Caryophyllaceae: Dianthus, Gypsophylla, Saponaria
4. Capparidaceae: Capparis, Cleome
5. Rutaceae: Murraya, Citrus
6. Apiaceae: Coriandrum, Foeniculum, Anethum
7. Cucurbitaceae: Luffa or any Cucurbbit
8. Asteraceae: Helianthus, Calandula, Sonchus
9. Acanthaceae: Adhatoda, Barleria
10. Apocynaceae: Catharanthus, Thevetia, Nerium
11. Asclepiadaceae: Calotropis
12. Scrophulariaceae: Linaria, Antirrhinum
13. Euphorbiaceae: Euphorbia, Phyllanthus
14. Lamiaceae: Ocimum, Salvia
15. Musaceae: Musa
16. Poaceae: Avena, Triticum, Hordeum, Poa, Sorghum

Suggested Readings
Bhandari, M.M. Flora of Indian Desert.
Maheshwari, J.K. Flora of Delhi, CSIR, New Delhi, 1963.

Page 3 of 46
PAPER II: ANATOMY OF ANGIOSPERMS, ECONOMIC BOTANY AND ETHNOBOTANY

Unit I: Anatomy of Angiosperms: Concept of stem cell in plants. Root system; Root apical meristem; differentiation of primary and secondary tissues and their roles; structural modification for storage, respiration, reproduction and for interaction with microbes.

Unit II: Shoot system: The shoot apical meristem and its histological organization; vascularization of primary shoot in monocotyledons and dicotyledons; cambium and its functions; formation of secondary xylem, a general account of wood structure in relation to conduction of water and minerals; characteristics of growth rings, sapwood and heart wood; secondary phloem-structure, function relationship; Periderm.

Unit III: Abnormal secondary growth and Leaf: Abnormal secondary growth in stems due to abnormal origin and activity of cambium. Leaf: Internal structure in relation to photosynthesis and water loss; adaptations to water stress; senescence and abscission.

Suggested Laboratory Exercises

ECONOMIC BOTANY: Food plants: Study of morphology and structure. Simple microchemicals tests of the food storing tissues in rice, wheat, maize, potato and sugarcane. Microscopic examination of starch in these plants (except sugarcane) Fibers: Study of cotton fiber, tests for cellulose. Vegetable oils: study of hand sections of Groundnut, Mustard and Coconut and staining of oils droplets by Sudan III and Sudan Black. Field visits: To study sources of firewood (10 plants), timber-yielding trees (10 trees) and bamboos. A list to be prepared mentioning special features. Medicinal Plants & Spices: Black pepper, cloves, cardamom describe them in briefly. Study of 10 medicinal plants. Write their botanical and common names, parts used and diseases/disorders for which they are prescribed. Beverages & Rubber: Coffee, Tea & Rubber
ETHNOBOTANY: Ethobotanically important plants of Rajasthan (Abrus, Leptidenia and Calotropis)

Suggested Readings
Sharma, O.P. Hill’s Economic Botany (Late Dr. A.F. Hill, Adapted by O.P. Sharma), Tata McGraw Hill Co., Ltd., New Delhi, 1996.

PAPER III: CELL BIOLOGY, GENETICS, PLANT BREEDING AND EVOLUTION

Unit IV: Origin of Agriculture, Centers of origin of crop plants and centers of Diversity. Concepts of Centers and Non-center (Harlan Hypothesis) Principles of plant breeding-Domestication, Introduction, Selection, Clonal propagation, Hybridization, Mutation breeding; Breeding work done on wheat; Green revolution; Assessment and Consequences; Biodiversity and Conservation of germplasm.

Suggested Laboratory Exercises

CYTOLOGY
1. Study of cell structure from onion leaf peels
2. Comparative study of cell structure in onion cells and Hydrilla
3. Smear preparation of root tips for different stages in Allium root tip
4. Cytological examination special types of chromosomes (Slides)
5. Examination of electron micrographs of eukaryotic cells and cell organelles

GENETICS
1. Working out laws of inheritance using seed mixtures
2. Monohybrid, dihybrid and test crosses using seed samples

PLANT BREEDING
1. Demonstration of Emasculation techniques.

Practical Exam Scheme
B.Sc. Botany Part II
Q1. Describe a given flower in semi-technical language with flower diagram and formula mentioning special feature of identification. Cut a T.S. of anther/ovary/ovule of the same flower and describe from embryological point of view. (10+4) (10+6)
Q2. Cut a T.S./V.S. of given stem/root/leaf and make a double stained preparation of the same. Draw a labeled diagram (outline and cellular), identify with special features. (8+6) (9+7)
Q3. Prepare a smear of onion root tip, for observation of metaphase and anaphase stage of mitosis. Draw a labeled diagram of the same. (12+4) (11+3)
Q4. Spots (1-9) three from each paper (27) (27)
Q5. Practical record (6) -

Suggested Readings
BIOTECHNOLOGY 2016

PAPER I: MOLECULAR BIOLOGY

Unit 1: Molecular basis of life, Structure of DNA, DNA replication in prokaryotes and eukaryotes. Concepts of genomics and proteomics.

Unit 2: DNA recombination - molecular mechanism in prokaryotes and eukaryotes. Insertion elements and transposons. Structure of prokaryotic genes.

Unit 3: Prokaryotic transcription, prokaryotic translation, prokaryotic gene expression (lac, his, trp, catabolic repression).

Unit 4: Structure of eukaryotic genes - transcription, eukaryotic translation, eukaryotic gene expression and transcription factors.

PAPER II: BIOPHYSICS

Unit II: Strategies of light reception in microbes, plants and animals. Electrical properties of biological components.

Unit III: Generation and reception of sonic vibrations. Hearing aids, Intra and intermolecular interactions in biological system.

Unit IV: Physical methods applied to find out molecular structure: X-ray crystallography and NMR. General Spectroscopy, Lambert-Beer Law, Spectrophotometry & Colorimetry, UV-VIS, Fluorescence, AAS, IR, Raman Spectra

Unit V: Physical methods of imaging intact structure: Ultra sound, Optical filters, X-ray, CAT scans, ECG, EEG, NMR imaging.

PAPER III: IMMUNOLOGY AND CELL CULTURE
Unit I: The immune system along with historical perspectives. Non-specific & specific immune mechanism, organs and cells of immunity and their function. Concept of Acquired and innate immunity and antigen.

Unit II: Structure and function of various classes of immuno-globulins
Humoral Immunity – Mechanism involved
Cell mediated immunity role of MHC, mechanism and cells involved.
Vaccines – Dead, live attenuated, recombinant, edible and chimeric vaccines.

Unit III: History of animal cell cultures. Biology of cultured Cells-the culture environment, Cell adhesion, Cell proliferation, energy metabolism.
Culture Vessels: The substrate, choice of culture vessels.
Laboratory requirements and sterilization techniques.
Simulating natural condition for growing animal cells- Importance of growth factor is serum.

Unit IV: Primary cultures: Isolation of tissue, primary explants cell line- Nomenclature, Subculture & Propagation, finite and continuous cell lines.
Commonly used cell lines: their origin and characteristics, growth kinetic and cell lines.

Unit V: Application of animal cell culture
Cell Separation, characterization and differentiation
Transformation– Characteristics and applications
Transfection of animal cell & selectable markers.

Practical
1. Separation of molecules in cellular extract in aqueous buffer
 (a) Gel Filtration
 (b) Ion exchange chromatography
 (c) TLC of extracted material
 (d) Isolation of chromosomal and plasmid DNA from bacteria
 (e) Restriction digestion of DNA and assigning restriction sites (demonstrations)
 (f) Making competent cells of E-coli
 (g) Transfection cells of plasmid DNA and selection for transformants.
2. Purification of antigens and antibodies
 (a) Raising polyclonal antibodies
 (b) Enzyme Linked Immunoassay
 (c) Radio immunoassay
 (d) Diagnosis of an infectious disease by an immunoassay

Book Recommended
Buchanan, Gruissem & Jones: Biochemistry and molecular biology of plants – American Society of Plant Physiologist, Maryland USA
Peter Paolella: Introduction to molecular biology. Tata McGraw Hill
Darnell, Lodish & Baltimore: Molecular cell Biology – Scientific American Books
Roitt, Male & Brostoff: Immunology. Mobey, London
Roitt: Essential Immunology – Blackwell Scientific
Practical
Time: 5.00 Hr
Max Mark: 75
Min Mark: 27
1. Perform and explain the given Molecular Biology experiment.
 Show the result to the examiner 12
2. Perform and explain the given Biophysics experiment. 12
3. Perform and explain the given immunology and/or cell culture Experiment 12
4. Identify and Comment upon the spots (1 to 7) 21
5. Viva-Voce 10
6. Practical Record 08

CHEMISTRY 2016
Paper I: CH-201 Inorganic Chemistry

Unit I: Chemistry of Transition Elements
General characteristics and Periodicity in properties with emphasis on their electronic configuration and multiple oxidation states of 3d, 4d and 5d series elements. Coloured ion formation, magnetic, catalytic properties and complex formation tendency in 3d series elements.

Unit II: Coordination compounds
Werner’s coordination theory and experimental verification, Effective Atomic Number concept, chelates, nomenclature of coordination compounds, stereoisomerism in complexes of coordination number 4 and 6. Complexometric titrations and theory of metallochrome indicators.

Unit III: f-Block elements
Chemistry of Lanthanides: Electronic structure, oxidation state, ionic radii, colours, spectral and magnetic properties. Lanthanide contraction and its consequences.
Chemistry of actinides: General characteristics, comparative treatment with lanthanides in respect to ionic radii, oxidation states, Magnetic behaviour and spectral properties.

Non aqueous solvents: Physical properties of solvent, types of solvents and their general characteristics. Reactions in non-aqueous solvents with reference to liquid NH₃ and liquid SO₂

Unit V: Quantitative analysis
Types of quantitative analysis: Gravimetric and volumetric analysis. Precipitation, Co-precipitation and Post precipitation. Errors in chemical analysis: types of error and their minimization; Accuracy, Precision, Standard Deviation.
Books Recommended:
1. Inorganic Chemistry by Satya Prakash
2. Inorganic Chemistry by B.R. Puri & L.R. Sharma
3. Inorganic Chemistry by Sangeeta Loonker, Ramesh Book Depot, Jaipur

PAPER II: CH-202 ORGANIC CHEMISTRY

Unit I: Electromagnetic Spectrum: Absorption Spectra
Ultraviolet (UV) absorption spectroscopy – absorption laws (Beer-Lambert law), molar absorptivity, presentation and analysis of UV spectra, types of electronic transitions, effect of conjugation. Concept of chromophore and auxochrome. Bathochromic, hypsochromic, hyperchromic and hypochromic shifts. UV spectra of conjugated enes and enones. UV applications including identification of groups.

Unit II: Alcohols
Classification and nomenclature.
Dihydric alcohols – nomenclature, methods of formation, chemical reactions of vicinal glycols, oxidative cleavage [Pb(OAc)₄ and HIO₄] and pinacol-pinacolone rearrangement. Trihydric alcohols – nomenclature and methods of formation, chemical reactions of glycerol.

Phenols

Unit III: Aldehydes and Ketones

Unit IV: Carboxylic Acid
Reactive methylene compounds: malonic ester and acetoacetic ester – preparation and synthetic applications. Mechanism of Claisen condensation

Ethers and Epoxides
Nomenclature of ethers and methods of their formation, physical properties. Chemical reactions – cleavage and autoxidation, Ziesel’s method for methoxy group.
Synthesis of epoxides. Acid and base-catalyzed ring opening of epoxides, orientation of epoxide, reactions of Grignard and organolithium reagents with epoxides.

Unit V: Organic Compounds of Nitrogen

Books Recommended:
1. Advanced Organic Chemistry by Mukherji, Singh & Kapoor
2. Organic Chemistry by Bahal and Bahal
3. Advanced Organic Chemistry by Morrison & Boyd
4. Carbonic Rasayan By K.M. Gangotri, RBD.

Paper III: CH-203 Physical Chemistry – II

Unit I: Thermodynamics – I

Unit II: Thermodynamics – II
Concept of entropy: entropy as a state function, entropy as a function of V & T, entropy as a function of P & T, entropy change in physical change, Clausius inequality, entropy as a criteria of spontaneity and equilibrium. Entropy change in ideal gases and mixing of gases. Gibbs and Helmholtz function as thermodynamic quantities, Gibbs – Helmholtz equation. Equilibrium constant and free energy. Reaction isotherm and reaction isochore – Clapeyron equation and Clausius–Clapeyron equation, applications. Third law of thermodynamics: Nernst heat theorem, Statement of third law and evaluation of absolute entropy from heat capacity data. Numericals.

Unit III: Phase Equilibrium
Statement and meaning of the terms – phase, component and degree of freedom, Gibbs phase rule, phase equilibria of one component system – water and sulphur systems.
Phase equilibria of two component system – solid-liquid equilibria, simple eutectic-Pb-Ag systems, desiliverisation of lead.
Solid solutions – compound formation with congruent melting point (Mg-Zn) and incongruent melting point, (FeCl$_3$-H$_2$O) system. Freezing mixtures.
Nernst distribution law – deviations from Nernst Law, applications to study of complex ion and solvent extraction.

Unit IV: Electrochemistry – I
Conductance, Specific conductance and equivalent conductance. Activity, activity coefficient and ionic strength. Debye-Huckel-Onsager’s equation for strong electrolytes (elementary treatment only). Transport number, definition and determination by Hittorf method and moving boundary method.
Applications of conductivity measurements: determination of degree of dissociation, determination of K_a of acids, determination of solubility product of a sparingly soluble salt, Conductometric titrations and their types.

Unit V: Electrochemistry – II.

Books Suggested:
4. Bhotic Rasayan by K.R. Genwa, RBD.

CH–204 Laboratory Course – II

Inorganic Chemistry: [20]

Gravimetric analysis
(i) To estimate Barium as barium sulphate.
(ii) To estimate copper as cupric oxide/ copper (I) thiocynate.
(iii) To estimate Zinc as Zinc oxide.

Organic Chemistry: [20]
(i) Calibration of Thermometer: - The following compounds may be used for the calibration purpose 80^0-82^0 (Naphthalene), 113.5^0-114^0 (Acetanilide), 132.5^0-133^0 (Urea) and 122^0 (Benzoic acid).
(ii) Qualitative Analysis: - Identification of organic compounds (one liquid and one solid) through the functional group analysis (containing only one functional group).
Physical Chemistry: [15]
Chemical Kinetics:
(i) To study the hydrolysis of an ester catalyzed by an acid and determine the rate constant and order of reaction.
(ii) To study saponification of ester and determine the rate constant and order of reaction.
(iii) To study the reaction b/w acetone and iodine with respect to iodine and determine the rate and order of reaction.

Viva [5]
Record [15]

Books Suggested (Laboratory Courses):
2. Practical Chemistry, S.Giri, D.N.Bajpai and O.P.Pandey Publ. S. Chand

Examination & Marking Scheme

Time: 6 hours (2 days) Max. Marks: 75 Min. Pass Marks: 27

<table>
<thead>
<tr>
<th>Regular Student</th>
<th>Ex Student</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gravimetric Exercise</td>
<td>20</td>
</tr>
<tr>
<td>Qualitative Organic Analysis</td>
<td>20</td>
</tr>
<tr>
<td>Physical Experiment</td>
<td>15</td>
</tr>
<tr>
<td>Viva- Voice</td>
<td>5</td>
</tr>
<tr>
<td>Sessional and Record</td>
<td>15</td>
</tr>
</tbody>
</table>

Total 75 60*

*To be converted out of 75

Gravimetric Exercise- An error up to 0.5% carries full marks. For each subsequent 0.1% error deduct 1 mark, 8 marks reserved for procedure.

Qualitative Organic Analysis: Two organic compounds (one solid and one liquid) 2 mark each for correct identification of functional group, 2 marks each for element detection, 4 marks each for identification and 2 mark each for systematic work and proper record.

Physical Experiment: Observations- 6 mark, Calculation and Formula-5, Result-4 marks.
GEOLOGY 2016

<table>
<thead>
<tr>
<th>Theory</th>
<th>Paper I</th>
<th>Igneous and Metamorphic Petrology</th>
<th>50 Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paper II</td>
<td>Sedimentary Petrology</td>
<td>50 Marks</td>
<td></td>
</tr>
<tr>
<td>Paper III</td>
<td>Stratigraphy</td>
<td>50 Marks</td>
<td></td>
</tr>
<tr>
<td>Practicals</td>
<td>Practical Examination</td>
<td>75 Marks</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>225 Marks</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Duration of each theory paper Examination: 3 Hrs.
Duration of Practical Examination: 3 Hrs.

PAPER I: IGNEOUS AND METAMORPHIC PETROLOGY

Unit I: Composition of magma. Crystallization of Unicomponent (Silica), Bicomponent (Ab-An) and Tricomponent magma (Ab-An-Di). Bowen’s Reaction Series. Forms and Structures of Igneous rocks.

Unit II: Textures and their genetic implications for Igneous rocks. Elementary idea of classification of Igneous rocks based on Mineralogical, mode of occurrence and Geochemical factors. Tabular classification of Igneous rocks.

Unit III: Metamorphism and its kinds and agents. Concept of depth zones, facies and grades of metamorphism. Texture and structures of metamorphic rocks.

Unit VI: Regional metamorphism of argillaceous, arenaceous and mafic rocks. Thermal metamorphism of impure carbonate rocks. Cataclastic metamorphism.

Unit V: Field, megascopic and microscopic characteristics and petrogenesis of following rocks. (A) Granite, Syenite, Gabbro, Anorthosite, Peridotite, Pegmatite, Lamprophyre, Rhyolite, Basalt. (B) Quartzite, Marble, Phyllite, Schist, Slate, Gneiss, Migmatite, Granulite and Charnokite.

PAPER II: SEDIMENTARY PETROLOGY

Unit I: Sediments and Sedimentary rocks, the process of their formation; Sedimentary structure: Surface structure- ripple marks, sole marks, rill marks, rain prints. Internal structure: bedding, graddbedding, cross bedding and penecontemporaneous deformation. Biogenic structures: stromatolites and ichnofossils.

Unit II: Texture of sedimentary rocks; grain size their distribution and geological significance, shape sphericity and roundness, packing orientation and internal fabric of sedimentary rock. Heavy minerals: The process of separation and study for provenance determination.

Unit III: Types of sediments and sedimentary rocks- clastic rocks, their classification and characteristics, Petrogenesis of common clastic rocks. Characteristics of Sandstone, Siltstone, Shale, Conglomerate and Breccia.

Unit IV: Chemical and Biogenic Rocks: Characteristics, classification and origin. Characteristics of Limestone, Dolomite, Phosphorite, Lignite and Coal.

Unit V: Elementary knowledge of sedimentary environments. Characteristics of their products, : Glacial, Lacusterine, Fluvial, Deltaic Shore line, Shelf and deep marine environments.
PAPER III : STRATIGRAPHY

Unit I: Geological Time Scale: various boundaries and characteristics of each division and Indian equivalents. Rock unit, Time unit and Rock-Time unit. Principles of stratigraphy. Stratigraphic correlation and various methods of its determination.

Unit II: Archean Geology of Dharwar Craton, Singhbhum Craton, Baster Craton and Eastern Ghat Craton and Rajasthan Craton (Bhilwara Supergroup to include BGC and Pre Aravalli metasediments).

Practicals
1. Petrological characteristics (Mineralogy, texture and structural and Petrogenesis) of important Igneous, Metamorphic and Sedimentary rocks in handspecimens.
2. Petrological characteristics (Mineralogy, texture and structural and Petrogenesis) of important Igneous, Metamorphic and Sedimentary rocks under Petrological Microscope.
3. Identification and Stratigraphic Ordering of rocks samples.
4. Demarcation of important Supergroups of Indian Stratigraphy in outline map of India.
5. Preparation of Geological map of western Rajasthan in Lab.

Suggested Reading
1. Tyrell GW Principles of Petrology
2. Tyrell GW Sailiki ke Sidhant, Madhya Pradesh Hindi Granth Academy, Bhopal.
7. Wadia D N Geology of India
PAPER I: STATISTICAL AND THERMAL PHYSICS

Note: The question paper for the examination will be divided in three parts i.e., Section – A, Section – B and Section – C.

Section – A: Will consist of 10 compulsory questions. There will be two questions from each unit and answer of each question shall be limited upto 30 words. Each question will carry 1 mark.

Section – B: Will consist of 10 questions. Two questions from each unit will be set and students will answer one question from each Unit. Answer of each question shall be limited upto 250 words. Each question carry 3.5 marks.

Section – C: Will consist of total 05 questions. The paper setter will set one question from each Unit and students will answer any 03 questions and answer of each question shall be limited upto 500 words. Each question will carry 7.5 marks.

Unit I: Statistical Method: Particle States, distribution of particles in two particle states, Probability of a given distribution, distribution corresponding to maximum probability, relative probability curve with increasing number of particles, binomial distribution, Standard deviation, micro-states and macro-states of a system, principle of equal ‘a priori’ probabilities, equilibrium state, fluctuations, reversibility and irreversibility, States of a particle inside a box, number of accessible states between an infinitesimally small energy interval, momentum interval, phase space, statistical weight of a configuration of a macro-
state, indistinguishable and distinguishable particles, entropy and principle of increase of entropy, statistical ensemble, time and ensemble averages; Thermal interaction between two systems, zeroth law of thermodynamics, concept of temperature.

Unit II: Canonical ensemble, Boltzmann canonical distribution, partition function, a two state system, paramagnetic susceptibility, heat capacity, Boltzmann formula for entropy, average energy and fluctuations, free energy, adiabatic interaction, enthalpy, general interaction, Gibbs free energy, first law of thermodynamics, phase transitions, Clausius-Clapeyron equation.

Ideal Classical Gas, Maxwell velocity and speed distributions, partition function, entropy (Sackur-Tetrode relation), Gibbs paradox; equation of state, ideal gas temperature scale, Vander-Waals equation of state; heat capacities of monatomic and diatomic gases, ortho and para hydrogen.

Unit III: Systems with variable Energy and Particle Number: Chemical potentials, grand canonical distribution, Partition function, number fluctuations, grand potential, equation of state of an ideal classical gas, Saha’s ionization formula, Maxwell-Boltzmann, Fermi-Dirac and Bose-Einstein Statistics, Fermi gas at 0K temperature; thermionic emission, strongly degenerate boson gas; Bose-Einstein Condensation, liquid helium.

Unit IV: Macroscopic Thermodynamics: Second law of thermodynamics; Carnot cycle, Carnot theorem, thermodynamic temperature scale and its identity with perfect gas temperature scale, entropy change in isothermal, and adiabatic expansions of an ideal gas; Thermodynamic potentials, Maxwell’s equations C_p/C_v, C_p/C_v, Black body radiation, energy density and pressure, Stefan-Boltzmann law, Wien’s displacement law, Planck’s law.

Unit V: Temperature changes in Joule and Joule-Thomson expansions, Regenerative cooling, adiabatic demagnetization and production of low temperatures, third law of thermodynamics, negative temperatures.

Transport Phenomena: Mean free path, collision cross-sections, mean free time, viscosity, thermal conductivity and self-diffusion.

Books suggested:
4. C. Kittel and H. Kroemer: Thermal Physics, CSS.
5. W.G.V. Rosser: An Introduction to Statistical Physics, Elis Horwood.

PAPER II : QUANTUM MECHANICS AND SPECTROSCOPY

Note: The question paper for the examination will be divided in three parts i.e., Section – A, Section – B and Section – C.

Section – A: Will consist of 10 compulsory questions. There will be two questions from each unit and answer of each question shall be limited upto 30 words. Each question will carry 1 mark.
Section – B: Will consist of 10 questions. Two questions from each unit will be set and students will answer one question from each Unit. Answer of each question shall be limited upto 250 words. Each question carry 3.5 marks.

Section – C: Will consist of total 05 questions. The paper setter will set one question from each Unit and students will answer any 03 questions and answer of each question shall be limited upto 500 words. Each question will carry 7.5 marks.

Unit I: Development of quantum theory: Blackbody radiation and their characteristics, failure of classical physics to explain spectral distribution of blackbody radiation, Planck’s quantum Hypothesis, Average energy of Planck oscillator, Planck’s radiation formula, Wien’s law, Rayleigh-Jean’s Law, Stefan-Boltzmann’s Law; Failure of classical physics to explain photo-electric effect and Compton effect, photons as carrier of energy and momentum of electro-magnetic waves.

Unit II: Wave Mechanics and Schrödinger equation: Phase velocity and group velocity of waves, wave particle duality; De Broglie Hypothesis; De Broglie group and phase velocity, wave packet, Heisenberg uncertainty principle, Statement and its equation from wave-packet in space and time; Application of uncertainty principle such as (i) Non-existence of electron in nucleus, (ii) Ground state of H-atom, (iii) Natural line width of spectral lines, X-ray microscope, Particles passing through (a) single slit and (b) double slit and observed on screen behind, explanation of distribution in terms of probability amplitude and interference of probability amplitude.

Postulates of Quantum Mechanics: Wave functions, Schrödinger superposition principle, operators in Quantum mechanics, Hermitian operators, expectation values, Interpretation of wave-function, symmetric and anti-symmetric wave functions, concept of parity; Probability density, Schrödinger equation, Schrödinger equation for free particle; Arguments in favour of this equation.

Unit III: Application of Schrödinger equation: Schrödinger equation for particle moving in potential field, Time dependent and time independent Schrödinger equation, Stationary states, Orthogonality of wave functions, Probability current density, Ehrenfest Theorem, Simple solution of Schrödinger equation (Restricted to one dimensional case), Particle in one dimensional infinite well, Particle in one dimensional finite well (one or both sides of well may be non-rigid), Calculation of reflection and transmission coefficient for potential step and potential barrier.

Unit V: Atom in magnetic field: Magnetic moment of atom, contribution from orbital and spin angular momentum, gyro-magnetic ratio; Interaction energy of atom in magnetic field, splitting of energy levels, using good quantum numbers in Normal Zeeman effect, Anomalous Zeeman effect and Paschen-Back effect, Selection rules for dipole transitions.

Molecular spectroscopy: qualitative features of molecular spectra, rigid rotator, rotational and vibrational energy levels of diatomic molecules, rotational-vibrational spectra.

Books suggested:
7. Semat: Atomic Physics
8. Alonso and Finn: Fundamental University Physics, Vol. – III.
10. Waghmare: Quantum Mechanics

PAPER III (A): ELECTRONICS

(Except for those students who opt Electronics as a subject)

Note: The question paper for the examination will be divided in three parts i.e., Section – A, Section – B and Section – C.

Section – A: Will consist of 10 compulsory questions. There will be two questions from each unit and answer of each question shall be limited upto 30 words. Each question will carry 1 mark.

Section – B: Will consist of 10 questions. Two questions from each unit will be set and students will answer one question from each Unit. Answer of each question shall be limited upto 250 words. Each question carry 3.5 marks.

Section – C: Will consist of total 05 questions. The paper setter will set one question from each Unit and students will answer any 03 questions and answer of each question shall be limited upto 500 words. Each question will carry 7.5 marks.

Unit I: Intrinsic and extrinsic semi-conductors, Fermi levels, mass-action law; carrier injection, recombination, diffusion and diffusion length, drift and diffusion currents, continuity equation; p-n junction, potential barrier, biasing, current-voltage relation, space charge and diffusion capacitances; varactor diode; Zener diode; tunnel diode; photovoltaic effect, solar cell.

Power supplies: Full wave and half wave rectifiers; ripple factor, voltage regulation; filters; Zener regulation.

Unit II: Network theorems – Thvenin, Norton, Maximum power transfer and Miller theorems.

Dipolar junction transistors, Ebers-Moll equations; CB, CE and CC configurations, BJT characteristics; biasing and thermal stabilization, self bias; hybrid parameters of a two port network; small signal hybrid equivalent model of a BJT at low frequencies, current, voltage and power gains; input and output impedances; high frequency hybrid pi model, short circuit current gain, fβ and fα; current gain with resistive load.

Unit III: Field effect transistors, JFET, MOSEET, construction and characteristics; FETs as voltage Controlled Devices, small signal model.

Large signal amplifiers, class A, B and C operations and efficiencies; distortions; determination of second harmonic distortion; push-pull amplifiers; impedance matching.

Unit IV: Negative Feedback: Current and voltage negative feedbacks; effect on stability, input and output impedances, distortion, frequency response; emitter follower.

Oscillators: Positive feedback, Barkhausen criterion; RC phase-shift oscillator; Hartley and Colpitts oscillators, UJT and sweep generators using UJT; Transistor as a switch and Astable multi-vibrator.
Unit V: Operational amplifiers, inverting and non-inverting; differential amplifiers, CMRR; measurement of OP AMP parameters; use of OP AMPs as adder, in analog integration and differentiation.
Digital circuits, Boolean algebra; AND, OR, NOT, NOR, NAND, XOR gates; logic gate circuits; realization of logic functions.

Books suggested:

PAPER III (B): COMPUTER SYSTEMS AND NETWORKING
(For the students who have offered Electronics as an Optional subject)
Note: The question paper for the examination will be divided in three parts i.e., Section – A, Section – B and Section – C.
Section – A: Will consist of 10 compulsory questions. There will be two questions from each unit and answer of each question shall be limited upto 30 words. Each question will carry 1 mark.
Section – B: Will consist of 10 questions. Two questions from each unit will be set and students will answer one question from each Unit. Answer of each question shall be limited upto 250 words. Each question carry 3.5 marks.
Section – C: Will consist of total 05 questions. The paper setter will set one question from each Unit and students will answer any 03 questions and answer of each question shall be limited upto 500 words. Each question will carry 7.5 marks.

Unit I: Integrated Circuits Technology: IC Fabrication: epitaxial growth, photomasking, etching, diffusion of impurities, isolation techniques.
Building blocks of a computer, Designing of a minimum Computer System: hardware design, distributed processing: connecting two microcomputers.

Unit II: System software: Operating system, need of OS, functions of OS, different types of OS, batch processing OS, multi programming OS, single user OS and multi user OS, time sharing OS, OS for Personal Computer, DOS, Windows OS, features of Windows OS, Unix OS, Open source OS Linux. Low level languages: machine language, Assembly language, assembler, high level languages, features of high level languages, interpreters and compilers.

Unit III: Application software: Program development in high level languages, algorithm and flow chart, execution of user application programs. Software packages: MS Office package, word processing, MS Word, preparing and printing documents in MS Word, MS Excel; using formulas and functions, plotting graphs, Power point presentation. Computer graphics, graphic software packages, Origin software package, plotting graphs in Origin.

Unit IV: Basic Network Functions: Overview, evolution of computer networks, elements of LAN and WAN, Network architecture, ISO-OSI architecture, hardware elements: modems,
multiplexers, concentrators, transmission media, twisted pair, coaxial cable, optical fibre, LAN topologies: bus, ring and star.

Unit V: Network interconnection issues: Internetworking bridges, routers, communication methods, store and forward techniques, circuit switching, packet switching, introduction to TCP/IP protocol family, issues related to network reliability and security.

Books suggested:
A. Mottershed: Electronic Devices and Circuits, PHI.
V. Rajaraman: Fundamentals of Computers, PHI.
Martin, J.: Networks and Distributed Processing, PHI.

Practicals
15. Study of variation of reflection coefficient on nature of termination using torsional wave apparatus.
16. Using a platinum resistance thermometer find the melting point of a given substance.
17. Determine thermal conductivity of a bad conductor by Lee’s method.
18. Determination of Ballistic Constant of a Ballistic galvanometer using condenser.
20. Determination of high resistance by method of leakage.
21. Study of variation of total thermal radiation with temperature.
22. Plot thermo emf versus temperature and find the neutral temperature and temperature of inversion.
23. e/m by Thomson’s method.
25. Measurement of capacitance and dielectric constant of a liquid and gas by De-Sauty Bridge.
27. Determination of Self Inductance of a Coil using Ballistic galvanometer.
29. To study the electromagnetic damping of a compound pendulum.
30. Experimental verification of the first law of thermodynamics by discharging the condenser.
31. To determine the energy Band gap in a semiconductor using junction diode.
32. Study of the characteristics of a given transistor (PNP/NPN) in common emitter configuration and find the value of parameter of given transistor.
33. Study of the characteristics of a given transistor (PNP/NPN) in common base configuration and find the value of parameter of given transistor.
34. Study the characteristics of rectifier junction diode and Zener diode.

Note: - New experiments may be added on availability of equipments.
ELECTRONICS 2016

Part II

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Paper</th>
<th>Subject</th>
<th>Pd/W (45mts.)</th>
<th>Exam. Hours</th>
<th>Max. Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elec. 201</td>
<td>Paper I</td>
<td>Amplifiers</td>
<td>2</td>
<td>3</td>
<td>50</td>
</tr>
<tr>
<td>Elec. 202</td>
<td>Paper II</td>
<td>Feedback systems</td>
<td>2</td>
<td>3</td>
<td>50</td>
</tr>
<tr>
<td>Elec. 203</td>
<td>Paper III</td>
<td>Communication Electronics</td>
<td>2</td>
<td>3</td>
<td>50</td>
</tr>
</tbody>
</table>

PRACTICAL

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6</td>
<td></td>
<td>5</td>
<td>75</td>
<td></td>
</tr>
</tbody>
</table>

Total

| | | | | | 225 |

PAPER I: AMPLIFIERS

Note: The question paper for the examination will be divided in three parts i.e., Section – A, Section – B and Section – C.

Section – A: Will consist of 10 compulsory questions. There will be two questions from each unit and answer of each question shall be limited upto 30 words. Each question will carry 1 mark.

Section – B: Will consist of 10 questions. Two questions from each unit will be set and students will answer one question from each Unit. Answer of each question shall be limited upto 250 words. Each question carry 3.5 marks.

Section – C: Will consist of total 05 questions. The paper setter will set one question from each Unit and students will answer any 03 questions and answer of each question shall be limited upto 500 words. Each question will carry 7.5 marks.

Unit I: Transistor biasing, bias stabilization and Operating point, thermal instability, stability factor, fixed bias, collector to base bias, emitter bias, voltage divider bias with emitter bias and emitter by pass capacitor.

Unit II: Small signal transistor amplifier Small signal hybrid equivalent circuits at low frequencies, analysis of transistor amplifier using h-parameters, current gain, input impedance, voltage gain and output impedance, comparison of CE, CB, CC amplifiers, Maximum available power gain, cascading transistor amplifiers.
Unit III: Frequency response of amplifier: Amplifier using triode, pentode, FET's, input capacitance, miller effect, bias methods, R.C. coupled amplifiers, voltage gain at low, mid and high frequencies, gain band width product. Effect of cascading on gain and bandwidth.

Unit IV: Large signal (power) amplifier: Class A, Class B and class C operations, efficiencies, distortions, power amplification, push pull amplifiers using transistors, transistor phase inverter, Class C tuned amplifier, commercial AF amplifier.

Unit V: Wide band (or video) amplifier: Band width requirement, high frequency hybrid π circuits for transistors, pulse testing, rise time, sag, various compensation techniques

PAPER II: FEEDBACK SYSTEMS

Note: The question paper for the examination will be divided in three parts i.e., Section – A, Section – B and Section – C.

Section – A: Will consist of 10 compulsory questions. There will be two questions from each unit and answer of each question shall be limited upto 30 words. Each question will carry 1 mark.

Section – B: Will consist of 10 questions. Two questions from each unit will be set and students will answer one question from each Unit. Answer of each question shall be limited upto 250 words. Each question carry 3.5 marks.

Section – C: Will consist of total 05 questions. The paper setter will set one question from each Unit and students will answer any 03 questions and answer of each question shall be limited upto 500 words. Each question will carry 7.5 marks.

Unit I: Feedback: General theory of feedback, characteristics of negative feedback - gain, stability, distortion, noise, frequency response, effect of negative feedback on input and output impedances of an amplifier, Voltage feedback- series input, shunt input, current feedback- series input and shunt input.

Unit II: Feedback amplifier: CE amplifier with current series and voltage shunt feedback, emitter follower, cathode follower and source follower, Cascade amplifier for tube, transistor and FET, Darlington pair, bootstrapping principle.

Unit III: Oscillators: Positive feedback and Barkhausen criterion, RC phase shift oscillator, Wein bridge oscillator, LC oscillators, tuned collector and tuned base, Hartley and Colpitt oscillators.

Unit IV: Operational Amplifier: Ideal operational amplifier, practical inverting and non inverting operational amplifiers, differential amplifier, common - mode rejection ratio (CMMR) emitter coupled differential amplifier, offset error voltages and currents, universal balancing techniques, input and output impedances of Op-Amp amplifier, oscillators using Op-Amp.

Unit V: Analog Computation: Basic building blocks of analog computer, solution of linear differential equations with constant coefficients, analog computer symbols, time and
amplitude scaling technique, estimation of maximum values, combined time and amplitude scaling

PAPER III: COMMUNICATION ELECTRONICS

Note: The question paper for the examination will be divided in three parts i.e., Section – A, Section – B and Section – C.

Section – A: Will consist of 10 compulsory questions. There will be two questions from each unit and answer of each question shall be limited upto 30 words. Each question will carry 1 mark.

Section – B: Will consist of 10 questions. Two questions from each unit will be set and students will answer one question from each Unit. Answer of each question shall be limited upto 250 words. Each question carry 3.5 marks.

Section – C: Will consist of total 05 questions. The paper setter will set one question from each Unit and students will answer any 03 questions and answer of each question shall be limited upto 500 words. Each question will carry 7.5 marks.

Unit I: Modulation: Need of a carrier frequency, AM, FM, PM, PCM, side bands, power consideration, collector and base modulation circuits. SSB transmission, FM by reactance variation using transistor, Armstrong PM system, block diagram of AM and FM transmitters

Unit II: Demodulation: Demodulation of AM signals, square law demodulation, linear envelope detector, AGC, demodulation of FM signals, amplitude limiter, Foster-Seeley frequency discriminator, Ratio detector

Unit III: Transmission line: Propagation constant, characteristic impedance, reflection on a line not terminated in characteristics impedance, reflection coefficient, open and short circuited lines, SWR, Impedance properties of λ/4 and λ/2 lines, stub matching.

Unit IV: Antennas: Dipole, quarter wave and half wave antenna and their radiation patterns, effect of ground, grounded antenna and antenna arrays

Unit V: Propagation of radio waves: Ground wave, sky wave and space wave propagation, structure of ionosphere, refraction and reflection of sky wave by ionosphere, refractive index, critical frequency, MUF, skip distance and fading.

Books Suggested:
Millman and Halkais: Electronic Devices and Circuits, TMH
Mottershead: Electronics Devices and Circuits, PHI, 1984
Ryder: Networks, Lines and Fields, PHI 1983
Terman: Electronic and Radio Engineering, McGraw Hill
Experiments for Practical Work

1. Characteristics of Pentode
2. Two Stage RC coupled Transistor Amplifier
3. Two Stage RC coupled FET Amplifier
4. Current series negative feedback Amplifier
5. Input and output impedance of an amplifier
6. Emitter Follower
7. Source Follower
8. Cathode Follower
9. Design of Filter Circuits
10. Cascading of filters circuits to simulated transmission lines
11. Study of Half Wave and Full wave rectifier with different filters.
12. To trace the output of Half Wave and Full wave rectifier with different filters using CRO
13. SCR characteristics
14. Study of Darlington pair
15. Study of operational amplifier
16. Study of Differential amplifier
17. Study of Cascade Amplifier
18. Two stage RC coupled Tube Amplifier
19. Firing circuits using RC phase shift networks and UJT
20. Trouble shooting training

Note: - New experiments may be added on availability of equipments.

COMPUTER SCIENCE 2016

Theory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Paper</th>
<th>Course Title</th>
<th>Pd/W (45mts.)</th>
<th>Exam. Hours</th>
<th>Max. Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 201</td>
<td>Paper I</td>
<td>Computer Organisation –I</td>
<td>2</td>
<td>3</td>
<td>50</td>
</tr>
<tr>
<td>CS 202</td>
<td>Paper II</td>
<td>Pascal and Data Structures</td>
<td>2</td>
<td>3</td>
<td>50</td>
</tr>
<tr>
<td>CS 203</td>
<td>Paper III</td>
<td>System Analysis and Design</td>
<td>2</td>
<td>3</td>
<td>50</td>
</tr>
</tbody>
</table>

PRACTICAL

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Practical</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 204</td>
<td>Practicals</td>
</tr>
</tbody>
</table>

Total

225
PAPER I: COMPUTER ORGANIZATION - I

Note: The question paper for the examination will be divided in three parts i.e., Section – A, Section – B and Section – C.

Section – A: Will consist of 10 compulsory questions. There will be two questions from each unit and answer of each question shall be limited upto 30 words. Each question will carry 1 mark.

Section – B: Will consist of 10 questions. Two questions from each unit will be set and students will answer one question from each Unit. Answer of each question shall be limited upto 250 words. Each question carry 3.5 marks.

Section – C: Will consist of total 05 questions. The paper setter will set one question from each Unit and students will answer any 03 questions and answer of each question shall be limited upto 500 words. Each question will carry 7.5 marks.

Unit I: Architecture of 8085 microprocessor and programming: Organization of 8085: Register organization, Bus organization, timing and controls. Data transfer: synchronous and asynchronous data transfer, memory mapped I/O and peripheral mapped I/O, Interrupt data transfer and DMA transfer.

Unit II: Peripheral devices and controllers: Architecture of simple I/O devices: Hex keyboard, LED display, VDU, Floppy disk, Hard disk and Optical disk data storage devices, block diagram representation of programmable keyboard/display interface, CRT controller, and floppy disk controller.

Unit III: Interfacing devices: I/O ports, interfacing memory and I/O with microprocessor, general purpose interfacing Devices: programmable peripheral interface 8255 A, 8253 programmable interval timer, 8259 programmable interrupt and DMA controller.

Unit IV: Assembly language programming: Instruction set of 8085: Instruction codes, functional groups and addressing modes, fetch and execution of instructions, Assembly language programming, stack and subroutines, Assembler and assembler directives, pseudo instructions.

Unit V: Applications of 8085: Designing of a microcomputer system: Hardware design, software design and program coding. Transfer of data between two microcomputers in distributed processing, Temperature monitoring system, Data acquisition system.

PAPER II: PASCAL AND DATA STRUCTURES

Note: The question paper for the examination will be divided in three parts i.e., Section – A, Section – B and Section – C.

Section – A: Will consist of 10 compulsory questions. There will be two questions from each unit and answer of each question shall be limited upto 30 words. Each question will carry 1 mark.

Section – B: Will consist of 10 questions. Two questions from each unit will be set and students will answer one question from each Unit. Answer of each question shall be limited upto 250 words. Each question carry 3.5 marks.
Section – C: Will consist of total 05 questions. The paper setter will set one question from each Unit and students will answer any 03 questions and answer of each question shall be limited upto 500 words. Each question will carry 7.5 marks.

Unit I: PASCAL: Constants, variables and labels, standard scalar data type, user defined scalar data type, type declaration, structure of Pascal program, Expressions, input and output statements, relational and logic operators, transfer of control: unconditional transfer, conditional transfer, IF-then, IF-then-else, case statements, iterative statements, While, Repeat and For statements, nested loops.

Unit II: Structured data types: Arrays, one dimensional and multi dimensional arrays, declaration of arrays, Records, declaration of records, accessing the fields of record, hierarchical records, array of records, WITH statement.

Functions and procedures: function subprogram, declaration and calling a function, procedures, declaration and calling a procedure, block structure, Local and Global identifiers, values and variables parameters, Recursion.

Pointers: pointer data type, defining pointer data type, variable declaration, operations on pointers, dynamic variables, dynamic data structure, Link Lists.

Unit III: Stack: stack data structure, operation on stack, PUSH and POP operation, array and record implementation of stack, application of stack; evaluation of arithmetic expressions, recursion, Postfix, Prefix and Infix notations, converting infix expression to postfix, evaluating post fix expression.

Queues: Queue data structure, entering and deleting elements in queue, array implementation of queue, circular queue.

Unit IV: Link LISTS: linked representation, structure of list, linear linked list, insertion and deletion in a linear linked list, Header and Trailer nodes, Circularly linked list.

Tree: Tree data structures, general and binary tree, tree terminology, linear and linked representation, inserting and deleting elements in a binary tree, tree traversal, in order, pre order and post order traversal.

Unit V: Graph: definition and representation, adjacency matrix, graph traversal, depth first search traversal, breadth first search traversal, Sorting: Introduction, Internal sorting and external sorting, Selection sort, Insertion sort, Bubble sort, Quick sort, Merge sort.

PAPER III: SYSTEM ANALYSIS AND DESIGN

Note: The question paper for the examination will be divided in three parts i.e., Section – A, Section – B and Section – C.

Section – A: Will consist of 10 compulsory questions. There will be two questions from each unit and answer of each question shall be limited upto 30 words. Each question will carry 1 mark.

Section – B: Will consist of 10 questions. Two questions from each unit will be set and students will answer one question from each Unit. Answer of each question shall be limited upto 250 words. Each question carry 3.5 marks.

Section – C: Will consist of total 05 questions. The paper setter will set one question from each Unit and students will answer any 03 questions and answer of each question shall be limited upto 500 words. Each question will carry 7.5 marks.
Unit I: System concepts: Definition, characteristics, types of systems, management information system, definition and importance in business organization, system development life cycle, recognition of need, feasibility study, analysis, design, implementation and maintenance, planning and control for system success, prototyping.

Unit II: System Planning and initial investigation: Information gathering about user staff, workflow, information gathering tools: review of literature, procedure and forms, on-site observation, interview and questionnaire, their types. Analysis tools: Data flow diagrams, data dictionary, decision trees and structures English, decision-tables, pros and cons of each tool, feasibility study and objectives, cost benefit analysis.

Unit III: System Design and Implementation: Logical and physical design, structured design, IPO charts, processing controls and data validation, audit trails, documentation, input and output forms design, system testing and quality assurance, system security and disaster recovery.

Unit IV: Basic Network Functions: Overview, evolution of computer networks, elements of LAN and WAN, Network architecture, ISO-OSI architecture, hardware elements: modems, multiplexers, concentrators, transmission media, twisted pair, coaxial cable, optical fibre, LAN topologies: bus, ring and star.

Unit V: Network interconnection issues: Internetworking bridges, routers, communication methods, store and forward techniques, circuit switching, packet switching, introduction to TCP/IP protocol family, issues related to network reliability and security.

Books suggested:
Award, E.M.: System Analysis and design, Galgotia Publications
Martin, J.: Networks and Distributed Processing, Prentice Hall of India.
Marris-Mano: Computer System Architecture, Prentice Hall of India
Gaonkar, R.: Microprocessor Architecture, Programming and Application, New Age International
Raffiquzamman M.: Microprocessor: Theory and Application, Prentice Hall Of India
Gosh and Sridhar: Introduction to Microprocessor for Engineers and Scientists, Prentice Hall Of India
Grover P.S.: PASCAL Programming and Fundamentals, Allied Publishers
Rajaraman: Computer Programming in PASCAL, Prentice Hall of India

Tremblaman, J.P. and Sorenser, P.G.: An Introduction to Data Structures with Applications, McGraw Hill
Experiments for Practical Work

MICRO PROCESSOR LABORATORY

(i) Digital Laboratory
(1) To study 4 bit adder and 4 bit subtractor.
(2) To design and study 2 bit parity generator and checker.
(3) To design and study 2 to 1 multiplexer and 1 to 2 de multiplexer.
(4) To design logic circuit to find 2’s complement of a 4 bit number.
(5) To study a 4 bit magnitude comparator.

(ii) Assembly Language Programming

Note: All programmes be written in indirect addressing mode.

(1) Write a program to find the sum of a series of 8 bit numbers.
(2) Write a program to find the sum of a series of 16 bit numbers.
(3) Write a program to find 2’s compliment of 16-bit number.
(4) Write a program to find least/most significant 4 bits of an 8-bit number.
(5) Write a program to find the smallest of the series of 8 bit numbers.
(6) Write a program to find the largest of the series of 8 bit numbers.
(7) Write a program to arrange a series of 8 bit numbers into ascending order/descending order.
(8) Write a program to find the product of (i) 8-bit * 8-bit (ii) 16-bit * 8-bit.
(9) Write a program to divide an 8-bit number by an 8-bit number up to 1 binary Point.
(10) Write a program to divide a 16it number by an 8-bit/ 16: bits number.
(11) Write a program to find square root of a perfect/imperfect 8-bit number.

SOFTWARE LABORATORY

(i) Elementary PASCAL Programming

(1) Write a program to show the use of different standard scalar data types.
(2) Write a program to show the use of sub range and enumerated data types.
(3) Write a program to show the use of arithmetic operations and build in functions in expression evaluation.
(4) Write a program to show the use of if-then and if-then-else statements.
(5) Write a program to show the use of if-then and case statement.
(6) Write a program to show the use of arrays.
(7) Write a program to show the use of while, repeat and for statements.
(8) Write a program to show the use of procedure.
(9) Write a program using recursion.
(10) Write a program to show the use of record data type.
(11) Write a program to implement stack using array.
(12) Write a program to show the operation of pointers.
(13) Write a program to create a linked list using pointers.
(14) Write a program to sort data using selection sort.
(15) Write a program to sort data using insertion sort.
(16) Write a program to sort data using bubble sort.

MATHEMATICS 2016

Paper II : Differential Equations.
Paper III : Mechanics I (Statics and Dynamics of particle)

Note: Each theory paper is divided in three parts i.e. Section – A, Section – B and Section – C

Section A: Will consist of 10 compulsory questions. There will be two questions from each unit and answer of each question shall be limited up to 30 words. Each question will carry 2 marks.

Section B: Will consist of 10 questions. Each unit will be having two question; students will answer one question from each Unit. Answer of each question shall be limited up to 250 words. Each question will carry 5 marks.

Section C: Will consist of total 05 questions one from each unit. Students will answer any 03 questions and answer of each question shall be limited up to 500 words. Each question will carry 10 marks.

Total Marks: 75

Paper I
Numerical Analysis and Linear Programming

Unit I: Difference operators and factorial notation, Differences of polynomial, Newton’s formulae for forward and backward interpolations. Divided differences, relation between divided differences and Simple difference. Newton’s general interpolation formulae, Lagrange interpolation formula.

Unit II: Central differences, Gauss, Stirling and Bessel interpolation formulae. Numerical Differentiation. Numerical integration, Trapezoidal, Simpsons and Weddles rules.

Unit III: Solution of linear difference equations with constant and variable coefficients. Solution of Algebraic and Transcendental equations, Iterative, Regula Falsi and Newton Raphson methods.

Unit IV: Convex sets and their properties, introduction to linear programming problems. Mathematical formulation; Graphical method of solution of linear programming problems for two variables.

Unit V: The simplex technique and its application to simple L.P. problems. Concepts of duality in linear programming. Framing of dual programming. Elementary theorems of duality.
Suggested Books

Gokhroo, Saini : Linear Programming (Hindi Ed.), Navkar Prakashan, Ajmer.
Mittal, Sethi : Linear Programming, Pragati Prakashan, Meerut
Goyal, Mittal : Numerical Analysis, Prograti Prakashan, Meerut
Bansal, Bhargava : Numerical Analysis (Hindi Ed.); Jaipur Publishing House, Jaipur
Saxena, H.C. : Numerical Analysis; S.Chand & Co., New Delhi
Gokhroo : Numerical Analysis (Hindi Ed.);Navkar Prakashan, Ajmer
Bhargava, Sharma, Bhati : Linear programming (Hindi Ed.); Jaipur Publishing House, Jaipur.

PAPER II: DIFFERENTIAL EQUATIONS

Unit I: Exact and reducible to exact differential equations of first order and first degree. First order higher degree differential equations solvable for x,y,p. Clairaut’s form and singular solutions.

Unit II: Linear differential equations with constant coefficients, Homogeneous linear differential equations with variable coefficients. Simultaneous differential equations, Total differential equations of the form Pdx + Qdy + Rdz = 0, by method of inspection and method for homogeneous equations.

Unit III: Linear differential equations of second order of the form

\[\frac{d^2y}{dx^2} + P \frac{dy}{dx} + Qy = R. \]

Exact Linear differential equations of nth order. Exact Non-Linear differential equations.

Differential equations of the various forms e.g., (i) \[\frac{d^2y}{dx^2} = f(y) \] (ii) Equations not containing y directly (iii) Equations not containing x directly and other forms. Method of variation of parameters to the solution of second order linear differential equations.

Unit V: Partial differential equations of second and higher order. Classification of linear partial differential equations of second order. Homogeneous and non-homogeneous equations with constant coefficients. Partial differential equations reducible to equations with constant coefficients. Monge’s method of integrating \(Rr + Ss + Tt = V. \)

Suggested Books
Sharma, Gupta : Differential Equations; Krishna Prakashan, Meerut
Bansal, Dhami : Differential equations (Vol. II); Jaipur Publishing House, Jaipur
Gokhroo, Saini, Kumbhat : Differential equations (Hindi Ed.);Navkar Prakashan, Ajmer

PAPER III: MECHANICS – I (STATICS AND DYNAMICS OF A PARTICLE)

Unit I: Resultant and equilibrium of coplanar forces acting on a rigid body. Friction.
Unit II: Stable and Unstable equilibrium. Forces in three dimensions, Poinset’s central axis, Warenches.

Unit III: Virtual work and common catenary.

Unit IV: Velocities and accelerations along radial and transverse directions and along tangential and normal directions. Simple harmonic motion and motion under inverse square law.

Unit V: Motion on smooth and rough plane curves, circular and cycloidal motions. Central forces and central orbits (excluding planetary motion).

Suggested Books

S.L. Ioney : Statics
S.L. Loney : Dynamics of a particle & Rigid bodies.
Ray, M : A Text book on Dynamics; S. Chand & Co., New Delhi
Gokhroo, Saini & Yadav : Higher Dynamics II (Hindi Ed.); Navkar Prakashan, Ajmer
Bhargava, Agarwal : Dynamics (Hindi Ed.);Jaipur Publishing House, Jaipur
Bhargava, Agarwal, Gupta : Statics (Hindi Ed.); Jaipur Publishing House, Jaipur
Gokhroo : Statics (Hindi Ed.); Navkar Prakashan, Ajmer.

B.A. / B.Sc. II Year

STATISTICS 2016

PAPER I: PROBABILITY AND PROBABILITY DISTRIBUTIONS

Unit I: Discrete probability distributions and their properties: Bernoulli, Binomial, Poisson, negative binomial, geometric, hypergeometric, multinomial and discrete uniform distributions.
Unit II: Continuous probability distributions and their properties: Uniform, Normal, Exponential, Beta type I and type II, Gamma and Cauchy distributions.

Unit III: Distributions of functions of random variables, cumulative distribution, function techniques, distribution of sum, difference, product and quotient of two random variables, the moment generating functions and transformation techniques (Chapter V of Mood, Graybill and Boes Book).

Unit IV: Concepts of conditional expectations, the conditional variance, the joint moment generating function and moments, the bi-variate normal distribution and its properties.

Unit V: Stochastic convergence: Chebyshev’s inequality and its generalized form, weak and strong law of large numbers, simple form of central limit theorem.

Books suggested:

Paper II Correlation and Numerical Methods

Unit I: Method of least squares, its application in fitting of straightline, Second degree parabola, logarithmic and exponential curves. The bi-variate data marginal and conditional frequency distribution, covariance, variance of a linear function of variates.

Unit II: Correlation and regression, the rank correlation, intraclass correlation, the correlation ratio, probable error.

Unit III: Multivariate data, concept of multiple correlation and regression, partial correlations, multiple regression equation (for three variables).

Unit IV: Time series and its components, method of moving average and curve fitting for determining trend, determination of seasonal indices. Link relative method.

Books Suggested
Scarborough, J.B.: Numerical Mathematical Analysis, Oxford and IBH.

PAPER III: SAMPLING TECHNIQUES

Unit I: Sampling surveys vs. complete enumeration, random and purposive sampling. Methods of drawing random sample, the principal steps in sample surveys, sampling and non sampling errors.
Unit II: Simple random sampling with and without replacement, stratified random sampling, comparison of stratified sampling with SRSWOR.

Unit III: Ratio and regression methods of estimation, estimation of population mean and total in large sample size. Comparison with simple estimator.

Unit IV: Systematic Sampling: unbiased estimator, variance of the estimator (including in terms of intra class correlation coefficient), Comparison with SRS, elementary idea of estimation of variance.

Cluster Sampling with equal cluster size: Unbiased estimator, variance of the estimator / (including in terms of intra class correlation coefficient), estimation of variance.

Unit V: Two stages sampling in case of equal cluster size at both the stages. Two phase sampling: ratio and regression estimation.

Books Suggested
Sukhatme, P.V. and others: Sample Surveys and its application, ISAS, Delhi – 12.

Practical
The students will be asked to attempt three exercises out of five exercises. The distribution of marks will be as follows:

<table>
<thead>
<tr>
<th></th>
<th>Regular Students</th>
<th>Ex-Students</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Three Practical exercise</td>
<td>45 Marks</td>
<td>45 Marks</td>
</tr>
<tr>
<td>(b) Practical record work</td>
<td>10 Marks</td>
<td>-</td>
</tr>
<tr>
<td>(c) Viva-Voce</td>
<td>20 Marks</td>
<td>20 Marks</td>
</tr>
<tr>
<td>Total</td>
<td>75 Marks</td>
<td>65 Marks</td>
</tr>
</tbody>
</table>

*To be converted out of 75 marks.

The following topics are prescribed for practical works:
1. Computation of co-efficient of (i) Simple correlation (ii) Rank correlation.
2. Preparation of correlation table from ungrouped data.
3. Determination of regression lines from (i) Ungrouped data (ii) Correlation table.
4. Fitting of linear regression in case of three variables, computation of partial and multiple correlations coefficient for three variables.
5. Fitting of (i) Straight line (ii) Second degree parabola (iii) Exponential curve by least square method.
6. Fitting of distributions (i) Binomial (ii) Poisson (iii) Normal distributions and testing of goodness of fit.
8. Practical on Numerical methods (Covered in Paper II).
9. Practical on sampling techniques (Covered in Paper III).
PAPER I: ECONOMICS OF DEVELOPMENT AND PLANNING IN INDIA

Max. Marks : 100
Time : 3 Hours

Unit I: Economic Development meaning and Measurement, Meaning of Vicious circle, Capital Formation and Human Resource Development, Resource mobilization

Unit II: Theories of Development : Rostow’s Theory of Historical Stage of Growth, Balanced and unbalanced Growth, Choice of Technique : Capital intensive and Labour Intensive

Unit III: Economic Planning: Meaning, Need, objective and relevance.
Planning under mixed Economy, Prerequisites of effective planning. The Indian Planning System : Planning Commission, plan formulation and Evaluation

Unit IV: Appraisal of Planning I India : Summary review of Achievements and Shortcomings with respect to Agriculture and Industry, Changing Role of Public sector, Salient features of current Five year plan of India

Unit V: Environment and Development, Sustainable economic development, Problems of environment. Man environment, Proper use and efficient management of natural resources, National efforts to reduce pollution

Suggested Readings
Seth, M. L. : thory and Practice of economics Planning, S. Chand & Co. New Delhi
Meir & Baldwin : Economic Development Theory, History &v policy
Dominick Salvatore & Edward Dowling : Development Economics (Schaum`s outline series)
Planning Commission, Government of India: current five plan
Government of Rajasthan : Current five year plan of Rajasthan
Sanskar, U : Environmental Economics, Oxford University press
Raghuvanshi , A. & Raghuvanshi C.L. Paryavaran & Pradushan, Madhya Pradesh Hindi Granth Academy, Bhopal.

Unit II: Determinants of National Income- Consumption Function; simple Keynesian consumption Function: Factors affecting saving–Consumption : Concept of simple Multiplier, Investment Function: Meaning, Determination of level of Investment ; Equality between Saving and Investment

Unit III: Money and Prices : concept of Money supply, Value of Money and its Measurement with Index Numbers, Quantity Theory of Money, Fisher and Cambridge Versions Commercial Banking : Principles of Commercial Banking Functions of Commercial Bank, Credit Creation

PAPER II: ECONOMIC THEORY II
Max. Marks : 100
Time : 3 Hours

Unit V: Public Finance : Meaning, Difference between Private and Public Finance : Public Revenue and its Sources : Tax and Non- Tax ; Sources of Public Debt; Types and Role of Public Expenditure

Recommended Readings

Samuelson & Nordhaus : Economics (H&E)
Chandler, L.V. Economics of Money and Banking .
Dernburg and McDougall: Macro Economics.
Ellsworth, P.T. and Leith, J.L. : The International Economy

RECOMMENDED READINGS

Seth M.L. : Mudra evam Banking (H&T)
Sethi, T.T. : Macro Economics (Hindi)
Vaishya, M.C. : Macro Economics (Hindi)

Recommended Readings
GEOGRAPHY 2016

Note: There will be two theory papers of 3 hours duration carrying 75 marks each, and a practical paper of 06 hours duration of 50 marks. Candidates will have to pass in theory and practical separately.

New Examination Scheme 2014:

<table>
<thead>
<tr>
<th>Part</th>
<th>Total No. Q.</th>
<th>Marks each Q.</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>10</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>B</td>
<td>5</td>
<td>7</td>
<td>35</td>
</tr>
<tr>
<td>C</td>
<td>3</td>
<td>10</td>
<td>30</td>
</tr>
</tbody>
</table>

Theory - Max. Marks : 75 Min marks : 27
Practical- Max.Marks : 50 Min marks : 18

PAPER I: HUMAN GEOGRAPHY

Unit I: Definition, scope and principles of human geography; its relationship with other Social science; Schools of human geography; Environmentalism, Possibilism and Neo-determinism

Unit II: Geographic environment and man: Influence of major land forms, climate and water bodies on human activities; Forms of adaptation to environment; human life in principal environments: Equatorial regions, Tropical deserts, Monsoon lands, Temperate grasslands, Mediterranean lands and Polar region

Unit III: Races of mankind: Criteria for classification; Classification schemes of krober, Haddon and G. Taylor; Population: growth, distribution and density in the world

Unit IV: Human settlements: Site, forms and types; House types with special reference to India

Unit V: Urbanization: Meaning, growth and causes of Urbanization; Principal agglomerations of world functional classification of Indian cities; slums and associated problems with reference to India, Problems of urbanization and remedies

Recommended Readings

Brunches, J.: Human Geography
Huntington, E.: The principles of Human Geography, John Wiley & Sons, N. Y.
Eperillou, A. V. Human Geography, Longamans, 1965
Karan, M. P.: Manavbhugolkesidhant, kitabghar, Kanpur.
Dwivedi, R.L. & Singh R.L.: Manav Bhugol Ki Samiksha
Blache Vidal deela: Manav Bhugol Ke Siddhant (in Hindi)
Husain, Majid: Human Geography, Rawat Publications, Jaipur and Delhi.

PAPER II: GEOGRAPHY OF RAJASTHAN

Unit I: Physiography and Physiographic divisions, Climate, Soil, Natural vegetation

Unit II: Population: growth, distribution and density; Tribal population distribution, principal tribes- Bhil, Meena and Girasiya; Rural settlements: growth pattern, types and building material; Tourism in Rajasthan-geographical perspective

Unit III: Mineral resources: Distribution and reserves of important minerals; Industry: Localization factors and spatial pattern; Transportation: Railways and roads, their pattern and accessibility

Unit IV: Agriculture: Agriculturalland use, Principal crops: wheat, maize, bajra, oilseeds and cotton; irrigation sources, spatial aspects of development of ground water; Principal irrigation Projects: Indira Gandhi Canal, Chambal Valley project and Mahi Bajaj Sagar; Animal Husbandry: Number, spatial pattern and principal breeds

Unit V: A detailed study of Marusthali, Aravalli Region, Eastern Agro-Industrial Region and Hadauti Region

Recommended Readings

Gupta & Prakash (ed.): Environmental Analysis of Thar Desert, English Books Depot, Dehradun, 1979
Misra, V.C.: Geography of Rajasthan, NBT, New Delhi, 1967 (also available in Hindi)
Roonwal, M.L. (ed.): Natural Resources of Rajasthan, Vols. I & II, University of Jodhpur, 1977
Sharma, R.C.: Settlement Geography of the India Desert, Korwar Brother, New Delhi, 1972
Singh, R.L. (ed.): India: A Regional Geography, National Geographical Society of India, Varanasi, 1917
Bhalla, L.R.: Rajasthan ka Bhugol
Mehr, I.: Rajasthan ka Bhugol

GEOGRAPHY PRACTICAL SCHEME

Four Practical Periods per week per group of 20 students

Max. Marks: 50 Min. marks: 18 Duration: 06 Hours.

1. Lab Work (Written paper): 02 Hours 21 Marks
2. Record Work & Viva Voce : 02 Hours 9+5 = 14 Marks
3. Field Survey & Viva Voce : 02 Hours 10+5=15 Marks

Total Marks 50 Marks

Note: Each Candidate is required to complete at least Thirty Exercises

2. Representation of socio-cultural and economic data by diagrams and diagrammatic maps: (1) Bar : Simple and Compound (2) Rectangular (3) Square (4) Block Pile (5) Wheel (6) Circle
3. Representation of socio-cultural and economic data by distribution maps: Choroschematic, Choro-pyleth, Isopleth and Dot Methods
4. Plane Table Survey

Recommended Readings:
Sharma, J.P.:PrayogikBhoogol, RastogiPrakashan, Meerut.

Hkwxksy izFkeiz'u&i=
EkkuoHkwxksy
bZdkbZ1% ekuoHkwxksydhfijHkk"kk] fo"k; {ks= .oafl}akr} vU; lekt foKkuksalsabdldIEck/k(ekuoHkwxksy dh fo’ks”krk,a %
fu;frokn} IEHkooknrFkuoufu:frokn
bZdkbZ2%HkkSxksfydi;kZoj.krFkkekuko % izeq[k Hkq&vkdjkjksatyok;qrFkkyt’;ksadk ekuofdz;kvksajizHkkol i;kZoj.kvufqdyu ds #i(izeq[k i;kZoj.kizns’kksa esaekuo thou % fo”qkor~js[kh; izns’k] m".ke#LFky] ekualquisns’k] le’khrks”.k
r’.k{ks=} Hkke/lekjhb; izns’krFkk /kzoh; izns’k
bZdkbZ3% ekuoiztkfr;ka % oxxZdj.k ds vk/kk{i(dzkskcj gSMurFkkthVsyyj ds oxxZdj.k
tu[l;k % fo’oeaso’f+]} forj,krFkk?kuRo
bZdkbZ4 % ekuoivf/kokl % FLFkfr] vkd’fr ,oazdkj{ Hkkjr ds fo’ks"klUnHkZesax’gizdkj
bZdkbZ5% uxjhdj.k % vFkZ] o’f} rFkdkj.k] fo’o ds eq[; tuleqg] Hkkjrh; uxjksa
Recommended Readings

Brunches, J. : Human Geography
Huntington, E ; The principles of Human Geography, John Wiley & Sons, N. Y.
Eperillou, A. V. : Human Geography, Longamans, 1965
Karan, M. P. : Manavbhumikolesidhant, kitabghar, Kanpur .
Dwivedi, R.L. &Singh R.L. : ManavBhugol Ki Samiksha
Blache Vidal deela : ManavBhugolKeSiddhant (in Hindi)
Oxford, 1986
Husain, Majid : Human Geography, Rawat Publications, Jaipur and Delhi.

Leong, G.C. & Morgan, G.C. : Human and Economic Geography, O.U.P.,
Oxford, 1986
Husain, Majid : Human Geography, Rawat Publications, Jaipur and Delhi.
20 fo/kkfFkZ;ksa ds ,d leqqggsrqizk;ksfxd ds pkjdkyak’kizfrIlrkg
vf/kdrevad: 50

le; vfof/k : : 06 /k.Vs

vad

1. izk;ksx’kkykd;kZ (fyf[kriz’u&i=)
 2 ?k.Vs
 21 vad

2. izk;kssfpxdvH;kliqflrdk ,oalk{kkRdkj
 2 ?k.Vs
 9+5=14 vad

3. {ks=h; losZ[k.k ,oalk{kkkRdkj
 2 ?k.Vs
 10+5=15vad
 ;ksx 50 vad

funsZ’k :izR;sfdo/kkfkhZdkszikz;ksfxdvH;kliqflrdksa de ls de 30 vH;klvkjsf[krdjusgsksxs | 1.
 /kjkrydksiznf’Zkrdjusdhfof/k;k:ak&LFkkfudApakBZ|gS ;wj [kf.Mrjs[kk,sa
 leksPpsjs[kk,sarFkkklesPpsjs[kkvsadkNsnu] vUmZ ;rk lsD’ku [khapdjvn ;:
 dVdUvkdkj dh ?kkVh] xWktZ[tizrlk] njkZ| lsMy(dkVh) | iBkJ ,ldkIzesUV|
 ckyqdLrlqj[Uvkdkj dh ?kkVh] >wyrhqgbZ’kkVhrFkk>hy|

2. LkekftdlkaLd’fro o vkfFkZdvdMskdksvkJkjs[kksa ,oavkJjs[kk; ekufp= lsaizn ’kZu&(1)
 lk/kkj.k o fefJrn.MkJs[k (k 2)vk;rkdkj (3)oxkZdkj (4)Cwykdikby (5)pdzf=p=] (6)’rfp=[]
 oxZeqyrFkk ?kuwweykiu | 3.
 Lkekftd] lkaLd’fro o vkfFkZdvdMskdksdjrj.ekufp=ksalsaizn ’kZu %o.kZizrhdhfof/k|
 Nk;akdufof/k] le&ekuj[kkfof/k fcUnqfof/k | 4.
 Lke&iVylodZ[k.k |

ZOLOGY 2016
There shall be three written papers of three hours duration each.

Theory

Marks

(Min. Pass Marks; 54)

Paper I	Chordate Structure and function	50
Paper II	Developmental Biology	50
Paper III	Immunology, Microbiology and Biotechnology	50

Practical : 75

(Min. Pass Marks; 27)

Duration of Theory examination 3 hours
Duration of practical examination 5 hours

Note: Each theory paper is divided in three parts i.e. Section–A, Section –B and Section –C.
Section-A: Will consist of 10 compulsory questions. There will be two questions from each unit and answer of each question shall be limited up to 30 words. Each question will carry of 1 mark.

Section –B: Will consist of 10 questions. Each unit will be having two questions; students will answer one question from each Unit. Answer of each question shall be limited up to 250 words. Each question carries 3.5 Marks.

Section-C: will consist of total 05 questions. Students will answer any 03 questions and answer of each question shall be limited up to 500 words. Each question carries 7.5 Marks.

PAPER I: CHORDATE STRUCTURE AND FUNCTION

Unit I: Classification and characters of phylum Chordata (excluding extinct forms) up to orders, Comparisons of habit, habitat, external features and anatomy of *Balanoglossus, Herdmania* and *Branchiostoma* (excluding development).

Unit II: Ascidian tadpole larva and its Metamorphosis, Affinities of Hemichordate, Urochordate and Cephalochordates, Habit, Habitat and salient features of Petromyzon, Ammocoete larva.

Unit III: Integument including structure and development of placoid scales, feathers and hairs, Jaw suspensorium, limbs and girdles of Rana, Uromastix, Columba and Oryctolagus.

Unit IV: Heart and aortic arches, respiratory system and alimentary canal of Scoliodon, Rana, Uromastix, Columba and Oryctolagus.

Unit V: Brain, urinogenital system (Scoliodon, Rana, Uromastix, Columba and Oryctolagus), Identification of poisonous and non poisonous snakes. Biting mechanism in snakes, flight adaptations in birds. Adaptations in aquatic mammals.

PAPER II: DEVELOPMENTAL BIOLOGY

Unit I: Formation of egg and sperm, vitellogenesis and fertilization. Types of eggs and sperms, parthenogenesis, regeneration.

Unit II: Planes and patterns of cleavage in chordates, significance of cleavage and blastulation, Morphogenetic cell movement, Fate maps and significance of gastrulation.

Unit III: Development of Branchiostoma (Amphioxus) up to gastrulation; chick egg and its development up to the formation of primitive streak, Extra embryonic membranes of chick, development of placenta in rabbit, types and functions of placenta in mammals.

Unit IV: Various types of stem cells and their applications (with special reference to embryonic stem cells),Cloning of animals: nuclear embryonic transfer technique, nuclear transfer technique; Identical, Siemese and fraternal twins and Artificial insemination.

Unit V: Organogenesis of alimentary canal, eye, kidney, gonads and brain in mammal.

PAPER III: IMMUNOLOGY, MICROBIOLOGY AND BIOTECHNOLOGY
Unit I: Types of immunity (innate and acquired, humoral and cell mediated), Antigen: Antigenicity of molecules, haptens, Antibody: Structure and functions of each class of immunoglobulins (IgG, IgM, IgD, IgA and IgE), antigen – antibody reactions.

Unit III: Asexual and sexual reproduction in Bacteria, Culture of Bacteria: Carbon and energy source, Nitrogen and minerals and Organic growth factors, Effect of environmental factors on bacterial culture: Temperature, hydrogen ion concentration; Medical importance of Gram-negative and Gram-positive bacteria.

Unit IV: Recombinant DNA technology: Introduction and principles, restriction endonucleases, cloning vehicles (plasmids, bacteriophages); methods of gene transfer and applications.

Unit V: Environmental Biotechnology (outline idea only): Metal and petroleum recovery, pest control, waste-water treatment, Food, Drink and Dairy Biotechnology (outline idea only): Fermented food production: dairy products, alcoholic beverages and vinegar: microbial spoilage and food preservation.

Practical
1. Study of microbes in food material (like curd, etc.)
2. Bacteria culture
3. DISSECTIONS
 - *Scoliodon*: General anatomy, alimentary canal, afferent and efferent blood vessels, urinogenital system, brain and cranial nerves – V, VII, IX and X only and internal ear
 - *Labeo / Wallago*: Brain V, VII, IX and X Cranial nerves, afferent and efferent blood vessels, air sacs, and internal ear.
 - *Rattus*: General anatomy, digestive, blood vascular and urinogenital systems
4. OSTEOMETRY
 - Articulated and disarticulated skeleton of *Rana, Varanus, Gallus* and *Oryctolagus*
5. PERMANENT PREPARATIONS
 - *Scoliodon*: Placoid scales, Ampulla of Lorenzini.
6. Identification, systematic position and comments of the following animals:
 - Hemichordata: *Balanoglossus*
 - Urochordata: *Salpa, Doliolum* and *Herdmania*
 - Cephalochordata: Petromyzon and Myxine
 - Pisces: *Zygaena, Scoliodon, Pristis, Torpedo, Trygon, Protopterus, Labeo, Heteropneustis (Saccobranchus), Belone, Exocoetus, Anabas and Echeneis*
 - Amphibia: *Necturus, Amphiuma, Amblystoma, Axolotl larva, Hyla, Uraeotyphlus*
 - Reptilia: *Trionyx, Chelone, Varanus, Uromastix, Ophiosaurus, Naja, Bungarus, Echis, Hydrophis, Eryx, Ptyas, Crocodylus and Gavialis*
 - Aves: *Columba, Pavo, Choriotis, Francolinus, Streptopelia*
 - Mammalia: *Meriones, Funambulus, Rattus, Hemiechinus, Suncus, Ptecopus, Presbytis* and *Macaca*
7. **Microscopic Study**

Hemichordata: Section through proboscis and branchiogenital region

Branch stoma: T.S. oral hood, pharynx, gonads, intestine and caudal region

Scoliodon: T.S. gill and scroll valve

Rana: T.S. through various organs, T.S. and L.S. of developmental stages

Reptilia: V.S. skin of lizard

Aves: V.S. skin, different types of feathers

Chick embryology: Whole mounts of embryos of 18, 24, 33, 48 and 72 hours

Mammalia: T.S. through various organs

Note: Each regular student is required to keep a record of practical work done by him/her duly checked by the teacher which will be submitted at the time of practical examination.

Distribution of Marks

<table>
<thead>
<tr>
<th></th>
<th>Maximum Marks: 75</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regular</td>
<td>Ex.</td>
</tr>
<tr>
<td>Major dissection (one)</td>
<td>15</td>
</tr>
<tr>
<td>Minor dissection (one)</td>
<td>06</td>
</tr>
<tr>
<td>Permanent preparation (one)/Study of microbes in food material (like curd, etc.)/Bacteria culture</td>
<td>10</td>
</tr>
<tr>
<td>Spots (eight)</td>
<td>24</td>
</tr>
<tr>
<td>Viva-voce</td>
<td>10</td>
</tr>
<tr>
<td>Practical record</td>
<td>10</td>
</tr>
<tr>
<td>Total</td>
<td>75</td>
</tr>
</tbody>
</table>

List of Recommended Books

8. Balinsky : Introduction to Embryology (CBS College Publishers)
10. R.A. Meyers (Ed.) : Molecular Biology and Biotechnology (VCH Publishers)

Page 45 of 46
16. Winchester, Genetics, Oxford IBH Publications